交換器
交換器暨交換機(Switch)由輸入輸出接口以及具有交換分組或信元等數據單元能力的轉發邏輯組成的網絡設備。轉發邏輯描述了用于交換技術的規則,實現數據單元的轉發,輸入輸出端口是物理的和邏輯的接口,用來連接到需要交換數據單元的通信網絡。
發展歷史 編輯本段
“交換機”是一個舶來詞,源自英文“Switch”,原意是“開關”,中國技術界在引入這個詞匯時,翻譯為“交換”。在英文中,動詞“交換”和名詞“交換機”是同一個詞(注意這里的“交換”特指電信技術中的信號交換,與物品交換不是同一個概念)。
1993年,局域網交換設備出現,1994年,國內掀起了交換網絡技術的熱潮。其實,交換技術是一個具有簡化、低價、高性能和高端口密集特點的交換產品,體現了橋接技術的復雜交換技術在OSI參考模型的第二層操作。與橋接器一樣,交換機按每一個包中的MAC地址相對簡單地決策信息轉發。而這種轉發決策一般不考慮包中隱藏的更深的其他信息。與橋接器不同的是交換機轉發延遲很小,操作接近單個局域網性能,遠遠超過了普通橋接互聯網網絡之間的轉發性能。
交換技術允許共享型和專用型的局域網段進行帶寬調整,以減輕局域網之間信息流通出現的瓶頸問題。已有以太網、快速以太網、FDDI和ATM技術的交換產品。
類似傳統的橋接器,交換機提供了許多網絡互聯功能。交換機能經濟地將網絡分成小的沖突網域,為每個工作站提供更高的帶寬。協議的透明性使得交換機在軟件配置簡單的情況下直接安裝在多協議網絡中;交換機使用現有的電纜、中繼器、集線器和工作站的網卡,不必作高層的硬件升級;交換機對工作站是透明的,這樣管理開銷低廉,簡化了網絡節點的增加、移動和網絡變化的操作。
利用專門設計的集成電路可使交換機以線路速率在所有的端口并行轉發信息,提供了比傳統橋接器高得多的操作性能。專用集成電路技術使得交換器在更多端口的情況下得以實現上述性能,其端口造價低于傳統型橋接器。
產品分類 編輯本段
從廣義上來看,網絡交換機分為兩種:廣域網交換機和局域網交換機。廣域網交換機主要應用于電信領域,提供通信用的基礎平臺。而局域網交換機則應用于局域網絡,用于連接終端設備,如PC機及網絡打印機等。從傳輸介質和傳輸速度上可分為以太網交換機、快速以太網交換機、千兆以太網交換機、FDDI交換機、ATM交換機和令牌環交換機等。從規模應用上又可分為企業級交換機、部門級交換機和工作組交換機等。各廠商劃分的尺度并不是完全一致的,一般來講,企業級交換機都是機架式,部門級交換機可以是機架式(插槽數較少),也可以是固定配置式,而工作組級交換機為固定配置式(功能較為簡單)。另一方面,從應用的規模來看,作為骨干交換機時,支持500個信息點以上大型企業應用的交換機為企業級交換機,支持300個信息點以下中型企業的交換機為部門級交換機,而支持100個信息點以內的交換機為工作組級交換機。
以太網交換機
隨著計算機及其互聯技術(也即通常所謂的“網絡技術”)的迅速發展,以太網成為了迄今為止普及率最高的短距離二層計算機網絡。而以太網的核心部件就是以太網交換機。
不論是人工交換還是程控交換,都是為了傳輸語音信號,是需要獨占線路的“電路交換”。而以太網是一種計算機網絡,需要傳輸的是數據,因此采用的是“分組交換”。但無論采取哪種交換方式,交換機為兩點間提供“獨享通路”的特性不會改變。就以太網設備而言,交換機和集線器的本質區別就在于:當A發信息給B時,如果通過集線器,則接入集線器的所有網絡節點都會收到這條信息(也就是以廣播形式發送),只是網卡在硬件層面就會過濾掉不是發給本機的信息;而如果通過交換機,除非A通知交換機廣播,否則發給B的信息C絕不會收到(獲取交換機控制權限從而監聽的情況除外)。
以太網交換機廠商根據市場需求,推出了三層甚至四層交換機。但無論如何,其核心功能仍是二層的以太網數據包交換,只是帶有了一定的處理IP層甚至更高層數據包的能力。網絡交換機是一個擴大網絡的器材,能為子網絡中提供更多的連接端口,以便連接更多的計算機。隨著通信業的發展以及國民經濟信息化的推進,網絡交換機市場呈穩步上升態勢。它具有性能價格比高、高度靈活、相對簡單、易于實現等特點。
光交換機
光交換是人們正在研制的下一代交換技術。所有的交換技術都是基于電信號的,即使是的光纖交換機也是先將光信號轉為電信號,經過交換處理后,再轉回光信號發到另一根光纖。由于光電轉換速率較低,同時電路的處理速度存在物理學上的瓶頸,因此人們希望設計出一種無需經過光電轉換的“光交換機”,其內部不是電路而是光路,邏輯原件不是開關電路而是開關光路。這樣將大大提高交換機的處理速率。
產品特點 編輯本段
因為交換機有帶寬很高的內部交換矩陣和背部總線,并且這個背部總線上掛接了所有的端口,通過內部交換矩陣,就能夠把數據包直接而迅速地傳送到目的節點而非所有節點,這樣就不會浪費網絡資源,從而產生非常高的效率。同時在此過程中,數據傳輸的安全程度非常高。
和集線器每個端口共享同樣帶寬不同的是,交換機的數據帶寬具有獨享性。在這樣的前提下,在同一個時間段內,交換機就可以將數據傳輸到多個節點之間,并且每個節點都可以當做獨立網段而獨自享有固定的部分帶寬,這樣就沒有和其他設備進行競爭實用的必要。
交換技術 編輯本段
交換機有兩種交換技術,一種是存儲轉發,另一種是穿通傳送。
存儲轉發技術要求交換機在轉發數據幀至目的段以前,接收并緩存整個數據幀,這樣可使交換機在傳遞數據幀至目的段以前校驗識別并丟掉有差錯的數據幀,緩存所帶來的延遲是這種技術的主要缺點。
穿通傳送技術的目的就是減少存儲轉發中的延遲,這種技術不需要緩存整個數據幀,而只需緩存用以決定目的地址的幀頭,然后就將數據幀很快地直接送到目的地,其主要缺點是無法有效地檢查出壞的數據幀。
由于這兩種技術各有利弊,現在也出現了結合兩種技術的交換機。如可以根據網絡運行情況自動選擇不同交換技術的混合型交換機,以及采用折中方式,緩存數據幀的前64位字節校驗后再傳送的改進型穿通傳送交換機。
工作原理 編輯本段
交換機工作于OSI參考模型的第二層,即數據鏈路層。交換機內部的CPU會在每個端口成功連接時,通過將MAC地址和端口對應,形成一張MAC表。在今后的通訊中,發往該MAC地址的數據包將僅送往其對應的端口,而不是所有的端口。因此,交換機可用于劃分數據鏈路層廣播,即沖突域;但它不能劃分網絡層廣播,即廣播域。
交換機擁有一條很高帶寬的背部總線和內部交換矩陣。交換機的所有的端口都掛接在這條背部總線上,控制電路收到數據包以后,處理端口會查找內存中的地址對照表以確定目的MAC(網卡的硬件地址)的NIC(網卡)掛接在哪個端口上,通過內部交換矩陣迅速將數據包傳送到目的端口,目的MAC若不存在,廣播到所有的端口,接收端口回應后交換機會“學習”新的MAC地址,并把它添加入內部MAC地址表中。使用交換機也可以把網絡“分段”,通過對照IP地址表,交換機只允許必要的網絡流量通過交換機。通過交換機的過濾和轉發,可以有效的減少沖突域,但它不能劃分網絡層廣播,即廣播域。
機器端口 編輯本段
交換機在同一時刻可進行多個端口對之間的數據傳輸。每一端口都可視為獨立的物理網段(注:非IP網段),連接在其上的網絡設備獨自享有全部的帶寬,無須同其他設備競爭使用。當節點A向節點D發送數據時,節點B可同時向節點C發送數據,而且這兩個傳輸都享有網絡的全部帶寬,都有著自己的虛擬連接。假使這里使用的是10Mbps的以太網交換機,那么該交換機這時的總流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB時,一個HUB的總流通量也不會超出10Mbps。總之,交換機是一種基于MAC地址識別,能完成封裝轉發數據幀功能的網絡設備。交換機可以“學習”MAC地址,并把其存放在內部地址表中,通過在數據幀的始發者和目標接收者之間建立臨時的交換路徑,使數據幀直接由源地址到達目的地址。
傳送原理 編輯本段
交換機的任意節點收到數據傳輸指令后,即對于存儲在內存里的地址表進行快速查找,從而對于MAC地址的網卡連接位置進行確認,然后再將數據傳輸到該節點上。如果在地址表中找到相應的位置,則進行傳輸;如果沒有,交換機就會將該地址進行記錄,以利于下次尋找和使用。交換機一般只需要將幀發送到相應的點,而無需如集線器發送到所有節點,從而節省了資源和時間,提高了數據傳輸的速率。
傳送方式 編輯本段
通過交換的方式進行的數據傳輸,其實就是交換機的數據傳送的方式。之前的集線器,更多是利用共享的方式,來對數據進行傳輸,沒有辦法從通訊的速度上進行要求。集線器的共享方式,也就是常說的共享式網絡,以集線器作為連接設備并且只 有一個方向的數據流,因而網絡共享的效率非常低。相對而言,交換機能夠對連接到自身的各臺電腦進行相應的識別,通過每臺電腦網卡的物理地址也就是常說的MAC地址,來進行記憶和識別。在這樣的前提之下,就不用再進行廣播尋找,而能夠直接將記憶的MAC地址找到相應的地點并且通過一個臨時性專用的數據傳輸通道,來完成兩個節點之間不受外來干擾的數據傳輸的通信。由于交換機還具有全雙工傳輸的方式,所以也可以對于多對節點間通過同時建立臨時的專用通道,來形成一個立體且交叉的數據傳輸通道結構。
應用用途 編輯本段
交換機的主要功能包括物理編址、網絡拓撲結構、錯誤校驗、幀序列以及流控。交換機還具備了一些新的功能,如對VLAN(虛擬局域網)的支持、對鏈路匯聚的支持,甚至有的還具有防火墻的功能。
學習:
以太網交換機了解每一端口相連設備的MAC地址,并將地址同相應的端口映射起來存放在交換機緩存中的MAC地址表中。
轉發/過濾:
當一個數據幀的目的地址在MAC地址表中有映射時,它被轉發到連接目的節點的端口而不是所有端口(如該數據幀為廣播/組播幀則轉發至所有端口)
消除回路:
當交換機包括一個冗余回路時,以太網交換機通過生成樹協議避免回路的產生,同時允許存在后備路徑。
交換機除了能夠連接同種類型的網絡之外,還可以在不同類型的網絡(如以太網和快速以太網)之間起到互連作用。如今許多交換機都能夠提供支持快速以太網或FDDI等的高速連接端口,用于連接網絡中的其它交換機或者為帶寬占用量大的關鍵服務器提供附加帶寬。
一般來說,交換機的每個端口都用來連接一個獨立的網段,但是有時為了提供更快的接入速度,我們可以把一些重要的網絡計算機直接連接到交換機的端口上。這樣,網絡的關鍵服務器和重要用戶就擁有更快的接入速度,支持更大的信息流量。
最后簡略的概括一下交換機的基本功能:
1. 像集線器一樣,交換機提供了大量可供線纜連接的端口,這樣可以采用星型拓撲布線。
2. 像中繼器、集線器和網橋那樣,當它轉發幀時,交換機會重新產生一個不失真的方形電信號。
3. 像網橋那樣,交換機在每個端口上都使用相同的轉發或過濾邏輯。
4. 像網橋那樣,交換機將局域網分為多個沖突域,每個沖突域都是有獨立的寬帶,因此大大提高了局域網的帶寬。
5. 除了具有網橋、集線器和中繼器的功能以外,交換機還提供了更先進的功能,如虛擬局域網(VLAN)和更高的性能。
傳統交換機從網橋發展而來,屬于OSI第二層即數據鏈路層設備。它根據MAC地址尋址,通過站表選擇路由,站表的建立和維護由交換機自動進行。路由器屬于OSI第三層即網絡層設備,它根據IP地址進行尋址,通過路由表路由協議產生。交換機最大的好處是快速,由于交換機只須識別幀中MAC地址,直接根據MAC地址產生選擇轉發端口算法簡單,便于ASIC實現,因此轉發速度極高。但交換機的工作機制也帶來一些問題。
1.回路:根據交換機地址學習和站表建立算法,交換機之間不允許存在回路。一旦存在回路,必須啟動生成樹算法,阻塞掉產生回路的端口。而路由器的路由協議沒有這個問題,路由器之間可以有多條通路來平衡負載,提高可靠性。
2.負載集中:交換機之間只能有一條通路,使得信息集中在一條通信鏈路上,不能進行動態分配,以平衡負載。而路由器的路由協議算法可以避免這一點,OSPF路由協議算法不但能產生多條路由,而且能為不同的網絡應用選擇各自不同的最佳路由。
3.廣播控制:交換機只能縮小沖突域,而不能縮小廣播域。整個交換式網絡就是一個大的廣播域,廣播報文散到整個交換式網絡。而路由器可以隔離廣播域,廣播報文不能通過路由器繼續進行廣播。
4.子網劃分:交換機只能識別MAC地址。MAC地址是物理地址,而且采用平坦的地址結構,因此不能根據MAC地址來劃分子網。而路由器識別IP地址,IP地址由網絡管理員分配,是邏輯地址且IP地址具有層次結構,被劃分成網絡號和主機號,可以非常方便地用于劃分子網,路由器的主要功能就是用于連接不同的網絡。
5.保密問題:雖說交換機也可以根據幀的源MAC地址、目的MAC地址和其他幀中內容對幀實施過濾,但路由器根據報文的源IP地址、目的IP地址、TCP端口地址等內容對報文實施過濾,更加直觀方便。
交換方式 編輯本段
交換機通過以下三種方式進行交換:
端口交換
端口交換技術最早出現在插槽式的集線器中,這類集線器的背板通常劃分有多條以太網段(每條網段為一個廣播域),不用網橋或路由連接,網絡之間是互不相通的。以太主模塊插入后通常被分配到某個背板的網段上,端口交換用于將以太模塊的端口在背板的多個網段之間進行分配、平衡。根據支持的程度,端口交換還可細分為:
·模塊交換:將整個模塊進行網段遷移。
·端口組交換:通常模塊上的端口被劃分為若干組,每組端口允許進行網段遷移。
·端口級交換:支持每個端口在不同網段之間進行遷移。這種交換技術是基于OSI第一層上完成的,具有靈活性和負載平衡能力等優點。如果配置得當,那么還可以在一定程度進行容錯,但沒有改變共享傳輸介質的特點,自而未能稱之為真正的交換。
幀交換
幀交換是應用最廣的局域網交換技術,它通過對傳統傳輸媒介進行微分段,提供并行傳送的機制,以減小沖突域,獲得高的帶寬。一般來講每個公司的產品的實現技術均會有差異,但對網絡幀的處理方式一般有以下幾種:
直通交換:提供線速處理能力,交換機只讀出網絡幀的前14個字節,便將網絡幀傳送到相應的端口上。
存儲轉發:通過對網絡幀的讀取進行驗錯和控制。
前一種方法的交換速度非常快,但缺乏對網絡幀進行更高級的控制,缺乏智能性和安全性,同時也無法支持具有不同速率的端口的交換。因此,各廠商把后一種技術作為重點。
有的廠商甚至對網絡幀進行分解,將幀分解成固定大小的信元,該信元處理極易用硬件實現,處理速度快,同時能夠完成高級控制功能(如美國MADGE公司的LET集線器)如優先級控制。
信元交換
ATM技術采用固定長度53個字節的信元交換。由于長度固定,因而便于用硬件實現。ATM采用專用的非差別連接,并行運行,可以通過一個交換機同時建立多個節點,但并不會影響每個節點之間的通信能力。ATM還容許在源節點和目標、節點建立多個虛擬鏈接,以保障足夠的帶寬和容錯能力。ATM采用了統計時分電路進行復用,因而能大大提高通道的利用率。ATM的帶寬可以達到25M、155M、622M甚至數Gb的傳輸能力。但隨著萬兆以太網的出現,曾經代表網絡和通訊技術發展的未來方向的ATM技術,開始逐漸失去存在的意義。
層數區別 編輯本段
二層交換機,三層交換機及四層交換機的區別
二層交換
二層交換技術的發展比較成熟,二層交換機屬數據鏈路層設備,可以識別數據包中的MAC地址信息,根據MAC地址進行轉發,并將這些MAC地址與對應的端口記錄在自己內部的一個地址表中。
具體的工作流程如下:
1) 當交換機從某個端口收到一個數據包,它先讀取包頭中的源MAC地址,這樣它就知道源MAC地址的機器是連在哪個端口上的;
2) 再去讀取包頭中的目的MAC地址,并在地址表中查找相應的端口;
3) 如表中有與這目的MAC地址對應的端口,把數據包直接復制到這端口上;
4) 如表中找不到相應的端口則把數據包廣播到所有端口上,當目的機器對源機器回應時,交換機又可以記錄這一目的MAC地址與哪個端口對應,在下次傳送數據時就不再需要對所有端口進行廣播了。不斷的循環這個過程,對于全網的MAC地址信息都可以學習到,二層交換機就是這樣建立和維護它自己的地址表。
從二層交換機的工作原理可以推知以下三點:
1) 由于交換機對多數端口的數據進行同時交換,這就要求具有很寬的交換總線帶寬,如果二層交換機有N個端口,每個端口的帶寬是M,交換機總線帶寬超過N×M,那么這交換機就可以實現線速交換
2) 學習端口連接的機器的MAC地址,寫入地址表,地址表的大小(一般兩種表示方式:一為BEFFER RAM,一為MAC表項數值),地址表大小影響交換機的接入容量
3) 還有一個就是二層交換機一般都含有專門用于處理數據包轉發的ASIC(Application specific Integrated Circuit,專用集成電路)芯片,因此轉發速度可以做到非常快。由于各個廠家采用ASIC不同,直接影響產品性能。
以上三點也是評判二、三層交換機性能優劣的主要技術參數,這一點請大家在考慮設備選型時注意比較。
三層交換
下面先來通過一個簡單的網絡來看看三層交換機的工作過程。
使用IP的設備A------------------------三層交換機------------------------使用IP的設備B
比如A要給B發送數據,已知目的IP,那么A就用子網掩碼取得網絡地址,判斷目的IP是否與自己在同一網段。如果在同一網段,但不知道轉發數據所需的MAC地址,A就發送一個ARP請求,B返回其MAC地址,A用此MAC封裝數據包并發送給交換機,交換機起用二層交換模塊,查找MAC地址表,將數據包轉發到相應的端口。
如果目的IP地址顯示不是同一網段的,那么A要實現和B的通訊,在流緩存條目中沒有對應MAC地址條目,就將第一個正常數據包發送向一個缺省網關,這個缺省網關一般在操作系統中已經設好,這個缺省網關的IP對應第三層路由模塊,所以對于不是同一子網的數據,最先在MAC表中放的是缺省網關的MAC地址(由源主機A完成);然后就由三層模塊接收到此數據包,查詢路由表以確定到達B的路由,將構造一個新的幀頭,其中以缺省網關的MAC地址為源MAC地址,以主機B的MAC地址為目的MAC地址。通過一定的識別觸發機制,確立主機A與B的MAC地址及轉發端口的對應關系,并記錄進流緩存條目表,以后的A到B的數據(三層交換機要確認是由A到B而不是到C的數據,還要讀取幀中的IP地址。),就直接交由二層交換模塊完成。這就通常所說的一次路由多次轉發。
以上就是三層交換機工作過程的簡單概括,可以看出三層交換的特點:
1)由硬件結合實現數據的高速轉發。這就不是簡單的二層交換機和路由器的疊加,三層路由模塊直接疊加在二層交換的高速背板總線上,突破了傳統路由器的接口速率限制,速率可達幾十Gbit/s。算上背板帶寬,這些是三層交換機性能的兩個重要參數。
2)簡潔的路由軟件使路由過程簡化。大部分的數據轉發,除了必要的路由選擇交由路由軟件處理,都是由二層模塊高速轉發,路由軟件大多都是經過處理的高效優化軟件,并不是簡單照搬路由器中的軟件。
二層和三層交換機的選擇
二層交換機用于小型的局域網絡。這個就不用多言了,在小型局域網中,廣播包影響不大,二層交換機的快速交換功能、多個接入端口和低廉價格為小型網絡用戶提供了很完善的解決方案。
三層交換機的優點在于接口類型豐富,支持的三層功能強大,路由能力強大,適合用于大型的網絡間的路由,它的優勢在于選擇最佳路由,負荷分擔,鏈路備份及和其他網絡進行路由信息的交換等等路由器所具有功能。
三層交換機的最重要的功能是加快大型局域網絡內部的數據的快速轉發,加入路由功能也是為這個目的服務的。如果把大型網絡按照部門、地域等等因素劃分成一個個小局域網,這將導致大量的網際互訪,單純的使用二層交換機不能實現網際互訪;如單純的使用路由器,由于接口數量有限和路由轉發速度慢,將限制網絡的速度和網絡規模,采用具有路由功能的快速轉發的三層交換機就成為首選。
一般來說,在內網數據流量大,要求快速轉發響應的網絡中,如全部由三層交換機來做這個工作,會造成三層交換機負擔過重,響應速度受影響,將網間的路由交由路由器去完成,充分發揮不同設備的優點,不失為一種好的組網策略,當然,前提是客戶的腰包很鼓,不然就退而求其次,讓三層交換機也兼為網際互連。
四層交換
第四層交換的一個簡單定義是:它是一種功能,它決定傳輸不僅僅依據MAC地址(第二層網橋)或源/目標IP地址(第三層路由),而且依據TCP/UDP(第四層) 應用端口號。第四層交換功能就象是虛IP,指向物理服務器。它所傳輸的業務服從各種各樣的協議,有HTTP、FTP、NFS、Telnet或其他協議。這些業務在物理服務器基礎上,需要復雜的載量平衡算法。
在IP世界,業務類型由終端TCP或UDP端口地址來決定,在第四層交換中的應用區間則由源端和終端IP地址、TCP和UDP端口共同決定。在第四層交換中為每個供搜尋使用的服務器組設立虛IP地址(VIP),每組服務器支持某種應用。在域名服務器(DNS)中存儲的每個應用服務器地址是VIP,而不是真實的服務器地址。當某用戶申請應用時,一個帶有目標服務器組的VIP連接請求(例如一個TCP SYN包)發給服務器交換機。服務器交換機在組中選取最好的服務器,將終端地址中的VIP用實際服務器的IP取代,并將連接請求傳給服務器。這樣,同一區間所有的包由服務器交換機進行映射,在用戶和同一服務器間進行傳輸。
特點:
OSI模型的第四層是傳輸層。傳輸層負責端對端通信,即在網絡源和目標系統之間協調通信。在IP協議棧中這是TCP(一種傳輸協議)和UDP(用戶數據包協議)所在的協議層。
在第四層中,TCP和UDP標題包含端口號(port number),它們可以唯一區分每個數據包包含哪些應用協議(例如HTTP、FTP等)。端點系統利用這種信息來區分包中的數據,尤其是端口號使一個接收端計算機系統能夠確定它所收到的IP包類型,并把它交給合適的高層軟件。端口號和設備IP地址的組合通常稱作"插口(socket)"。1和255之間的端口號被保留,他們稱為"熟知"端口,也就是說,在所有主機TCP/I P協議棧實現中,這些端口號是相同的。除了"熟知"端口外,標準UNIX服務分配在256到1024端口范圍,定制的應用一般在1024以上分配端口號。分配端口號的清單可以在RFC1700 "Assigned Numbers"上找到。
TCP/UDP端口號提供的附加信息可以為網絡交換機所利用,這是第四層交換的基礎。具有第四層功能的交換機能夠起到與服務器相連接的"虛擬IP"(VIP)前端的作用。每臺服務器和支持單一或通用應用的服務器組都配置一個VIP地址。這個VIP地址被發送出去并在域名系統上注冊。在發出一個服務請求時,第四層交換機通過判定TCP開始,來識別一次會話的開始。然后它利用復雜的算法來確定處理這個請求的最佳服務器。一旦做出這種決定,交換機就將會話與一個具體的IP地址聯系在一起,并用該服務器真正的IP地址來代替服務器上的VIP地址。
每臺第四層交換機都保存一個與被選擇的服務器相配的源IP地址以及源TCP端口相關聯的連接表。然后第四層交換機向這臺服務器轉發連接請求。所有后續包在客戶機與服務器之間重新影射和轉發,直到交換機發現會話為止。在使用第四層交換的情況下,接入可以與真正的服務器連接在一起來滿足用戶制定的規則,諸如使每臺服務器上有相等數量的接入或根據不同服務器的容量來分配傳輸流。
1) 速度
為了在企業網中行之有效,第四層交換必須提供與第三層線速路由器可比擬的性能。也就是說,第四層交換必須在所有端口以全介質速度操作,即使在多個千兆以太網連接上亦如此。千兆以太網速度等于以每秒1488000 個數據包的最大速度路由(假定最壞的情形,即所有包為以及網定義的最小尺寸,長64字節)。
2)服務器容量平衡算法
依據所希望的容量平衡間隔尺寸,第四層交換機將應用分配給服務器的算法有很多種,有簡單的檢測環路最近的連接、檢測環路時延或檢測服務器本身的閉環反饋。在所有的預測中,閉環反饋提供反映服務器現有業務量的最精確的檢測。
3) 表容量
應注意的是,進行第四層交換的交換機需要有區分和存貯大量發送表項的能力。交換機在一個企業網的核心時尤其如此。許多第二/三層交換機傾向發送表的大小與網絡設備的數量成正比。對第四層交換機,這個數量必須乘以網絡中使用的不同應用協議和會話的數量。因而發送表的大小隨端點設備和應用類型數量的增長而迅速增長。第四層交換機設計者在設計其產品時需要考慮表的這種增長。大的表容量對制造支持線速發送第四層流量的高性能交換機至關重要。
4) 冗余
第四層交換機內部有支持冗余拓撲結構的功能。在具有雙鏈路的網卡容錯連接時,就可能建立從一個服務器到網卡,鏈路和服務器交換器的完全冗余系統。
管理方式 編輯本段
可網管交換機可以通過以下幾種途徑進行管理:通過RS-232串行口(或并行口)管理、通過網絡瀏覽器管理和通過網絡管理軟件管理。
串口管理 編輯本段
可網管交換機附帶了一條串口電纜,供交換機管理使用。先把串口電纜的一端插在交換機背面的串口里,另一端插在普通電腦的串口里。然后接通交換機和電腦電源。在Windows 98和Windows 2000里都提供了“超級終端”程序。打開“超級終端”,在設定好連接參數后,就可以通過串口電纜與交換機交互了,如圖1所示。這種方式并不占用交換機的帶寬,因此稱為“帶外管理”(Out of band)。
在這種管理方式下,交換機提供了一個菜單驅動的控制臺界面或命令行界面。你可以使用“Tab”鍵或箭頭鍵在菜單和子菜單里移動,按回車鍵執行相應的命令,或者使用專用的交換機管理命令集管理交換機。不同品牌的交換機命令集是不同的,甚至同一品牌的交換機,其命令也不同。使用菜單命令在操作上更加方便一些。
Web管理 編輯本段
可網管交換機可以通過Web(網絡瀏覽器)管理,但是必須給交換機指定一個IP地址。這個IP地址除了供管理交換機使用之外,并沒有其他用途。在默認狀態下,交換機沒有IP地址,必須通過串口或其他方式指定一個IP地址之后,才能啟用這種管理方式。
使用網絡瀏覽器管理交換機時,交換機相當于一臺Web服務器,只是網頁并不儲存在硬盤里面,而是在交換機的NVRAM里面,通過程序可以把NVRAM里面的Web程序升級。當管理員在瀏覽器中輸入交換機的IP地址時,交換機就像一臺服務器一樣把網頁傳遞給電腦,此時給你的感覺就像在訪問一個網站一樣,如圖2所示。這種方式占用交換機的帶寬,因此稱為“帶內管理”(In band)。
如果你想管理交換機,只要點擊網頁中相應的功能項,在文本框或下拉列表中改變交換機的參數就可以了。Web管理這種方式可以在局域網上進行,所以可以實現遠程管理。
軟件管理 編輯本段
可網管交換機均遵循SNMP協議(簡單網絡管理協議),SNMP協議是一整套的符合國際標準的網絡設備管理規范。凡是遵循SNMP協議的設備,均可以通過網管軟件來管理。你只需要在一臺網管工作站上安裝一套SNMP網絡管理軟件,通過局域網就可以很方便地管理網絡上的交換機、路由器、服務器等。通過SNMP網絡管理軟件的界面如圖3所示,它也是一種帶內管理方式。
可網管交換機的管理可以通過以上三種方式來管理。究竟采用哪一種方式呢?在交換機初始設置的時候,往往得通過帶外管理;在設定好IP地址之后,就可以使用帶內管理方式了。帶內管理因為管理數據是通過公共使用的局域網傳遞的,可以實現遠程管理,然而安全性不強。帶外管理是通過串口通信的,數據只在交換機和管理用機之間傳遞,因此安全性很強;然而由于串口電纜長度的限制,不能實現遠程管理。所以采用哪種方式得看你對安全性和可管理性的要求了。
硬件故障 編輯本段
交換機故障一般可以分為硬件故障和軟件故障兩大類。硬件故障主要指交換機電源、背板、模塊和端口等部件的故 障,具體可以分為以下幾類。
電源故障 編輯本段
由于外部供電不穩定,或者電源線路老化或者雷擊等原因導致電源損壞或者風扇停止,從而不能正常廠作。
由于電源緣故而導致機內其他部件損壞的事情也經常發生。如果面板上的PowER指示燈是綠色的,就表示是正常的:如果該指示燈滅了,則說明交換機沒有正常供電。這類問題很容易發現,也很容易解決,同時也是最容易預防的。針對這類故障,首先應該做好外部電源的供應工作,一般通過引入獨立的電力線來提供獨立的電源,并添加穩壓器來避免瞬間高壓或低壓現象。如果條件允許,可以添加不間斷電源來保證交換機的正常供電,有的提供穩壓功能,而有的沒有,選擇時要注意。在機房內設置專業的避雷措施,用來避免雷電對交換機的傷害。現在有很多做避雷工程的專業公司,實施網絡布線時可以考慮。
端口故障 編輯本段
這是最常見的硬件故障,無論是光纖端口還是雙絞線的RJ一45端口,在插拔接頭時一定要小心。如果不小心把光纖插頭弄臟,可能導致光纖端口污染而不能正常通信。我們經常看到很多人喜歡帶電插拔接頭,理論上講是可以的,但是這樣也無意中增加了端口的故障發生率。
另外在搬運時不小心,也可能導致端口物理損壞。如果購買的水晶頭尺寸偏大,插入交換機時,電容易破壞端口。此外,如果接在端口的雙絞線有一段暴露在室外,萬一這根電纜被雷電擊中,就會導致所連交換機端口被擊壞,或者造成更加 不可預料的損傷。一般情況下,端口故障是某一個或者幾個端口損壞。所以,在排除了端口所連計算機的故障后,可以通過更換所連端口,來判斷其是否損壞。遇到此類故障,可以嘗試在電源關閉后,用酒精棉球清洗端口,如果端口確實被損壞,那就只能更換端口了。
模塊故障 編輯本段
交換機是由很多模塊組成,比如:堆疊模塊、管理模塊(控制模塊)和擴展模塊等。這些模塊發生故障的機率很小,不過一旦出現問題,就會遭受巨大的經濟損失。如果插拔模塊時不小心,或者搬運交換機時受到碰撞,或者電源不穩定等情況,都可能導致此類故障的發生。
背板故障 編輯本段
交換機的各個模塊都是接插在背板上的。如果環境潮濕,電路板受潮短路,或者元器件因高溫、雷擊等因素而受損都會造成電路板不能正常工作。比如:散熱性能不好或環境溫度太高導致機內溫度升高,致使元器件燒壞。在外部電源正常供電的情況下,如果交換機的各個內部模塊都不能正常工作,那就可能是背板壞了,遇到這種情況即使是電器維修工程師,恐怕也無計可施,惟一的辦法就是更換背板了。
線纜故障 編輯本段
其實這類故障從理論上講,不屬于交換機本身的故障,但在實際使用中,電纜故障經常導致交換機系統或端口不能正常工作,所以這里也把這類故障歸入交換機硬件故障。比如接頭接插不緊,線纜制作時順序排列錯誤或者不規范,線纜連接時應該用交叉線卻使用了直連線,光纜中的兩根光纖交錯連接,錯誤的線路連接導致網絡環路等。
發展前景 編輯本段
隨著云計算和虛擬化技術的迅速發展,數據中心業務的融合,對交換機的性能、功能、可靠性等提出了更高的要求。但由于數據中心交換機能夠承載各種業務,對數據的傳輸提供較 好的保障。而數據中心交換機將來還會承載未來更多的業務,對未來網絡的發展有很好的擴展性。所以相信對于未來數據中心的建立,數據中心交換機會隨著時代發展,針對網絡中的需求研發出更高性能、穩定和更新技術的交換機。現在已經步入數據時代,相信數據中心交換機必定會大展宏圖。
世界在進步,科技在發展,網絡也在不斷的提速。從第一塊網卡的問世,到現在通用的千兆以太網卡、萬兆網卡,甚至還有很多超萬兆的網卡出現。標示著,世界正在發生翻天覆地的變化,數據流量正在不斷地增加,傳統的交換機已經不能滿足現在日趨復雜的網絡和龐大的流量。為了能夠更好的承載視頻、語音、文件等各種服務。需要高速的硬件和新一代的交換系統來處理越來越大的數據流量。隨著云計算的發展越來越快,對于數據中心的建立將帶來更大的考驗,對交換機的性能、背板帶寬要求也更加高。數據中心交換機在此大環境下孕育而 生,接替了傳統的交換機工作在數據中心。提供了更高的可靠性,更穩定的性能和更大的吞吐量。還有更新的技術解決復雜的網絡。
附件列表
詞條內容僅供參考,如果您需要解決具體問題
(尤其在法律、醫學等領域),建議您咨詢相關領域專業人士。