汽車發動機
汽車發動機是為汽車提供動力的裝置,是汽車的心臟,決定著汽車的動力性、經濟性、穩定性和環保性。根據動力來源不同,汽車發動機可分為柴油發動機、汽油發動機、電動汽車電動機以及混合動力等。
常見的汽油機和柴油機都屬于往復活塞式內燃機,是將燃料的化學能轉化為活塞運動的機械能并對外輸出動力。汽油機轉速高,質量小,噪音小,起動容易,制造成本低;柴油機壓縮比大,熱效率高,經濟性能和排放性能都比汽油機好。
除了使用汽油和柴油之外,使用其他新能源的汽車被稱為新能源汽車,包括純電動汽車、混合動力汽車、燃料電池汽車、燃氣汽車、生物乙醇/生物柴油汽車和氫發動汽車等。我國市場上在售的新能源汽車多是混合動力汽車,但是目前已把純電動汽車作為了主攻方向。
歷史發展 編輯本段
發動機是汽車的動力源。汽車發動機大多是熱能動力裝置,簡稱熱力機。熱力機是借助工質的狀態變化將燃料燃燒產生的熱能轉變為機械能。
1876年,德國人奧托(Nicolaus A. Otto)在大氣壓力式發動機的基礎上發明了往復活塞式四沖程汽油機。由于采用了進氣、壓縮、做功和排氣四個沖程,發動機的熱效率從大氣壓力式發動機的11%提高到14%,而發動機的質量卻降低了70%。
1892 年,德國工程師狄塞爾(Rudolf Diesel)發明了壓燃式發動機(即柴油機),實現了內燃機歷史上的第二次重大突破。由于采用高壓縮比和膨脹比,熱效率比當時其他發動機又提高了1 倍。
1926 年,瑞士人布希(A. Buchi)提出了廢氣渦輪增壓理論,利用發動機排出的廢氣能量來驅動壓氣機,給發動機增壓。50 年代后,廢氣渦輪增壓技術開始在車用內燃機上逐漸得到應用,使發動機性能有很大提高,成為內燃機發展史上的第三次重大突破。
1967 年德國博世(Bosch)公司首次推出由電子計算機控制的汽油噴射系統(Electronic Fuel Injection,EFI),開創了電控技術在汽車發動機上應用的歷史。經過30年的發展,以電子計算機為核心的發動機管理系統(Engine Management System,EMS)已逐漸成為汽車(特別是轎車發動機)上的標準配置。由于電控技術的應用,發動機的污染物排放、噪聲和燃油消耗大幅度地降低,改善了動力性能,成為內燃機發展史上第四次重大突破。
1967年,美國進行了一次氫氣汽車行駛的公開表演,那輛氫氣汽車在80公里時速下,每次充氫10分鐘可運行121公里。該車有19個座位,由美國比林斯公司制造。1971年,第一臺裝有斯特林發動機(Strling)的公共汽車開始運行。1972年,日本本田技研工業在市場售出裝有復合渦流控制燃燒(CVCC, Compound Vertex Controlled Combustion)的發動機的西維克(Civic)牌轎車,打響了稀薄氣體燃燒發動機的第一炮。
1980年,日本研制成功液態氫氣車。在后部裝有保持液態氫低溫和一定壓力的特制貯存罐。該車用85公升的液氫,行駛了400公里,時速達135公里。
1980年,美國試制成功了一種鋅氯電池電動汽車。
1980年,西班牙試研制成功一種太陽能汽車。
1980年,西德漢堡市西北伊策霍的一位工程師,發明了一種利用電石氣(乙炔氣)作動力的汽車。先將電石變成氣體,然后用這種氣體燃燒推動噴氣式發動機來驅動汽車,其速度和安全性均不亞于汽油車,20公斤電石塊可以使汽車至少行駛300公里。
1980年,美國加州大學的約翰。庫伯和埃爾文。貝倫開始研究“燒鋁”的電動汽車。
1984年,前蘇聯研制出一種雙重燃料汽車。當汽車發動時,首先使用汽油,然后專用天然氣。
1984年,美國美孚石油公司的阿莫柯比化學公司,研制出了一種叫杜隆塑料的合成材料,該公司采用這一塑料成功地制造出了世界上第一臺全塑料汽車發動機,其重量只有84公斤。美國的洛拉T-616GT型汽車用的就是這種全塑發動機。
1984年,澳大利亞工程師沙里許研制成功了一種OCP發動機。
1985年,澳大利亞彼蘭丁研制出一種安全可靠、啟動靈活、高速而又不冒煙的蒸汽機汽車。
1986年,日本的三洋電氣公司研制成功首輛太陽能電池汽車。
1994年,英國的戴維。伯恩發明了另一種風力汽車,并已投入批量生產。
內燃機 編輯本段
分類
? 按進氣系統的工作方式可分為自然吸氣、渦輪增壓、機械增壓和雙增壓四個類型。
? 按活塞運動方式可分為往復活塞式內燃機和旋轉活塞式發動機兩種。
? 按氣缸排列型式分直列發動機,V型發動機、W型發動機和水平對置發動機等。
? 按氣缸數目不同可以分為單缸發動機和多缸發動機。現代汽車多采用三缸,四缸、六缸、八缸發動機。
? 按冷卻方式不同可以分為水冷發動機和風冷發動機。水冷發動機冷卻均勻,工作可靠,冷卻效果好,被廣泛應用于現代車用發動機。
? 按沖程數可分為四沖程內燃機和二沖程內燃機。汽車發動機廣泛使用四沖程內燃機。
? 按燃油供應方式分類:化油器發動機和電噴發動機以及缸內直噴發動機。
原理
由于汽油和柴油的不同特性,汽油機和柴油機在工作原理和結構上有差異。
汽油發動機(汽油機)的工作原理
⑴進氣沖程(intake stroke)
活塞在曲軸的帶動下由上止點移至下止點。此時進氣門開啟,排氣門關閉,曲軸轉動180°。在活塞移動過程中,汽缸容積逐漸增大,汽缸內氣體壓力從pr逐漸降低到pa,氣缸內形成一定的真空度,空氣和汽油的混合氣通過進氣門被吸入汽缸,并在汽缸內進一步混合形成可燃混合氣。由于進氣系統存在阻力,進氣終點時,汽缸內氣體壓力小于大氣壓力p ,即pa= (0.80~0.90)p。進入汽缸內的可燃混合氣的溫度,由于進氣管、汽缸壁、活塞頂、氣門和燃燒室壁等高溫零件的加熱以及與殘余廢氣的混合而升高到340~400K。
⑵ 壓縮沖程(compression stroke)
壓縮沖程時,進、排氣門同時關閉。活塞從下止點向上止點運動,曲軸轉動180°。活塞上移時,工作容積逐漸縮小,缸內混合氣受壓縮后壓力和溫度不斷升高,到達壓縮終點時,其壓力pc可達800~2 000kPa,溫度達600~750K。
⑶ 做功沖程(power stroke)
當活塞接近上止點時,由火花塞點燃可燃混合氣,混合氣燃燒釋放出大量的熱能,使汽缸內氣體的壓力和溫度迅速提高。燃燒最高壓力p達3 000~6 000kPa,溫度T達2 200~2 800K。高溫高壓的燃氣推動活塞從上止點向下止點運動,并通過曲柄連桿機構對外輸出機械能。隨著活塞下移,汽缸容積增加,氣體壓力和溫度逐漸下降,到達 b 點時,其壓力降至300~500kPa,溫度降至1 200~1 500K。在做功沖程,進氣門、排氣門均關閉,曲軸轉動180°。
⑷ 排氣沖程(exhaust stroke)
排氣沖程時,排氣門開啟,進氣門仍然關閉,活塞從下止點向上止點運動,曲軸轉動180°。排氣門開啟時,燃燒后的廢氣一方面在汽缸內外壓差作用下向缸外排出,另一方面通過活塞的排擠作用向缸外排氣。由于排氣系統的阻力作用,排氣終點r 點的壓力稍高于大氣壓力,即pr=(1.05~1.20)p0。排氣終點溫度Tr=900~1100K。活塞運動到上止點時,燃燒室中仍留有一定容積的廢氣無法排出,這部分廢氣叫殘余廢氣。
四沖程柴油機的工作原理
四沖程柴油機工作原理汽油機一樣,每個工作循環也是由進氣沖程、壓縮沖程、做功沖程和排氣沖程組成。由于柴油與汽油相比,自燃溫度低、黏度大不易蒸發,因而柴油機采用壓縮終點壓燃著火(壓燃式點火),而汽油機是火花塞點燃。
⑴進氣沖程
進入汽缸的工質是純空氣。由于柴油機進氣系統阻力較小,進氣終點壓力pa= (0.85~0.95)p0,比汽油機高。進氣終點溫度Ta=300~340K,比汽油機低。
⑵ 壓縮沖程
由于壓縮的工質是純空氣,因此柴油機的壓縮比比汽油機高(一般為ε=16~22)。壓縮終點的壓力為3 000~5 000kPa,壓縮終點的溫度為750~1 000K,大大超過柴油的自燃溫度(約520K)。
⑶ 做功沖程
當壓縮沖程接近終了時,在高壓油泵作用下,將柴油以100MPa左右的高壓通過噴油器噴入汽缸燃燒室中,在很短的時間內與空氣混合后立即自行發火燃燒。汽缸內氣體的壓力急速上升,最高達5 000~9 000kPa,最高溫度達1 800~2 000K。由于柴油機是靠壓縮自行著火燃燒,故稱柴油機為壓燃式發動機。
⑷ 排氣沖程
柴油機的排氣與汽油機基本相同,只是排氣溫度比汽油機低。一般Tr=700~900K。對于單缸發動機來說,其轉速不均勻,發動機工作不平穩,振動大。這是因為四個沖程中只有一個沖程是做功的,其他三個沖程是消耗動力為做功做準備的沖程。為了解決這個問題,飛輪必須具有足夠大的轉動慣量,這樣又會導致整個發動機質量和尺寸增加。采用多缸發動機可以彌補上述不足。現代汽車多采用四缸、六缸和八缸發動機。
結構
1—油底殼 | 8—活塞 | 15—排氣門 | 22—點火開關 |
2—機油 | 9—水套 | 16—凸輪軸 | 23—點火線圈 |
3—曲軸 | 10—汽缸 | 17—高壓線 | 24—火花塞 |
4—曲軸同步帶輪 | 11—汽缸蓋 | 18—分電器 | 25—進氣門 |
5—同步帶 | 12—排氣管 | 19—空氣濾清器 | 26—蓄電池 |
6—曲軸箱 | 13—凸輪軸同步帶輪 | 20—化油器 | 27—飛輪 |
7—連桿 | 14—搖臂 | 21—進氣管 | 28—啟動機 |
曲柄連桿機構
在做功行程時,曲柄連桿機構將燃料燃燒以后產生的氣體壓力,經過活塞、連桿轉變為曲軸旋轉的轉矩;然后,利用飛輪的慣性完成進氣、壓縮、排氣3個輔助行程。曲柄連桿機構由氣缸體曲軸箱組、活塞連桿組和曲軸飛輪組3部分組成。
一、氣缸體曲軸箱組
在氣缸體的下部有主軸承座,用于安裝曲軸飛輪組。氣缸體的側面設有挺桿室,用于安裝氣門傳動機件。氣缸體的上平面安裝氣缸蓋,下平面安裝機油盤,前端面安裝正時齒輪蓋,均加有襯墊并用螺栓緊固密封。氣缸體的后端面安裝飛輪殼。
為了增強缸體的耐磨性,延長氣缸體的使用壽命,氣缸體內大都鑲有氣缸套。氣缸套分為干式和濕式兩種。干式氣缸套不與冷卻液接觸,為防止缸套向下竄動,可在上/下止口限位。濕式氣缸套外表面直接與冷卻液接觸,為防止漏冷卻液,缸套下止口處裝有1~3個橡膠密封圈。
機油盤的作用是儲存潤滑油,故俗稱油底殼。它一般采用薄壁鋼板沖壓而成,內部設有穩油擋板以防止潤滑油過分激蕩,底部設有放油塞以便更換潤滑油。
氣缸蓋的主要作用是封閉氣缸上部,并與活塞頂構成燃燒室。氣缸蓋上有燃燒室、水套、火花塞座孔(柴油發動機有噴油器安裝孔)、進排氣道、氣門座、氣門導管座孔等。上部裝有搖臂軸總成,用氣缸蓋罩封閉,結合面間裝有密封點墊。汽油發動機氣缸蓋一般是整體的,但也有例外,如EQ6100—1型發動機就是兩個氣缸蓋。氣缸直徑較大的柴油發動機采用一缸一蓋或二缸一蓋,最多不超過三缸一蓋,以防止氣缸蓋變形。
氣缸墊俗稱氣缸床,安裝在氣缸蓋與氣缸體之間,其作用是密封氣缸體與氣缸蓋的結合平面,以防止漏氣、漏冷卻液及漏油。氣缸墊多采用石棉板材料制成,有些用石棉板兩面包銅皮或鐵皮制成,有些用中間鋼片兩面貼適合應性好的乳膠石棉板制成。燃燒室孔采用雙層或單層金屬包邊,以防燃燒氣體沖壞石棉層。
二、活塞連桿組
三、曲軸飛輪組
配氣機構 編輯本段
配氣機構的作用是根據發動機的工作順序和各缸工作循環的要求,及時地開啟和關閉進、排氣門,使可燃混合氣(汽油發動機)或新鮮空氣(柴油發動機)進入氣缸,并將廢氣排入大氣。
四沖程發動機廣泛采用氣門凸輪式配氣機構,它由氣門組和氣門傳動組兩部分組成。按其傳動方式不同,可分為正時齒輪傳動式和鏈條傳動式兩種;按凸輪軸的位置不同,可分為下置凸輪軸式、中置凸輪軸式和上置凸輪軸式。下置凸輪軸式配氣機構工作時,曲軸通過一對互相嚙合的正時齒輪帶動凸輪軸旋轉,當凸輪的凸尖上升到最高位置時氣門開度最大。當凸輪的凸尖向下運動時,由于氣門彈簧的彈力作用,氣門及其傳動機件恢復原位,將氣道關閉。與下置凸輪軸式配氣機構相比,中置和上置凸輪軸式配氣機構因曲軸與凸輪軸距離較大,故多為正時鏈條或正時帶傳動。中置凸輪軸式省去了推桿;上置凸輪軸式省去了挺桿及推桿。
一、氣門組
氣門組一般由氣門、氣門座、氣門導管、氣門油封、氣門彈簧和氣門鎖片等組成。
氣門分為進氣門和排氣門兩種,其作用是分別用來關閉進、排氣道。氣門由頭部和桿部組成,頭部制成錐形,與氣門座的錐面配合。頭部錐角,一般為45°。同一臺發動機的進氣門頭部直徑大于排氣門頭部直徑,以提高發動機的充氣量。氣門桿部為圓柱形,與氣門導管內孔配合,桿的端部制有環槽,用來安裝氣門彈簧座鎖片。
氣門座用來保證氣門密封,并將氣門頭部的熱量傳給氣缸蓋。氣門座一般用特種合金制成環狀,緊密地鑲在氣缸蓋上。
氣門導管用來引導氣門作往復直線運動,保證氣門與氣門座閉合位置正確。為防止氣缸蓋上潤滑油從氣門與氣門導管之間的間隙進入燃燒室,氣門導管上端裝有氣門油封。
氣門彈簧是圓柱形螺旋彈簧,它可使氣門迅速關閉,并使氣門頭部與氣門座相互壓緊,保證密封。
二、氣門傳動組
氣門傳動組的作用是按照發動機的工作順序,適時地開啟和關閉氣門,并保證氣門有足夠的開度。
凸輪軸用于控制氣門開閉,并驅動汽油泵、機油泵和分電器等機件工作。凸輪軸上制有進氣凸輪、排氣凸輪、軸頸、驅動機油泵及分電器的齒輪、推動汽油泵搖臂的偏心輪等,進氣和排氣凸輪是凸輪軸的重要組成部分,它們在凸輪軸上的排列順序由進、排氣道的布置來決定。
正時齒輪及正時鏈條或正時皮帶實現曲軸與凸輪軸之間的傳動。如CA6102、BJ492Q型發動機為正時齒輪傳動;北京切諾基汽車發動機為正時鏈條傳動;上海桑塔納汽車發動機為正時帶傳動。四沖程發動機曲軸旋轉兩周,凸輪軸應旋轉應一周,使進、排氣門各開、閉一次,并且氣門開閉時機須與各缸工作循環的需要相適應。因此,無論是齒輪傳動還是鏈條傳動,都必須按照規定的記號裝配,其記號一般為輪齒部位的凹坑。
氣門挺桿的作用是將凸輪的推力傳給推桿或氣門。挺桿的類型有菌型、筒形非液壓式、筒形液壓式等,筒形液壓式等,筒形液壓式挺桿無氣門間隙,可以減少發動機的噪聲,但精度要求嚴、成本高,多應用于高級轎車發動機。
搖臂及搖臂軸總成的作用是改變推桿(下置凸輪軸式)、挺桿(中置凸輪軸式)或凸輪(上置凸輪軸式)的推力方向,使氣門開啟。搖臂軸總成固定在氣缸蓋上部,主要由搖臂、搖臂軸支座等組成,搖臂制成兩臂不等長,這樣使挺桿、推桿以較小的升程就能獲得氣門較大的開度。搖臂長臂一端與氣門桿相對應,短臂一端裝有調整螺釘及螺母,用來調整氣門腳間隙。搖臂軸為空心軸,與搖臂軸支座、搖臂有貫通的潤滑油道,以潤滑配氣機構部分的摩擦表面。
供給系統
汽油發動機燃料系的作用是根據發動機不同工作情況的需要,將純凈的空氣和汽油配制成適當比例的可燃混合氣,送入各個氣缸進行燃燒后所產生的廢氣排入大氣中。
點火系統
冷卻系統
冷卻系統將受熱零件吸收的部分熱量及時散發出去,保證發動機在最適宜的溫度狀態下工作。水冷式冷卻系統由水套、水泵、散熱器、風扇、節溫器等組成。風冷式由風扇和散熱片等組成。
潤滑系統
潤滑系的功用是向作相對運動的零件表面輸送定量的清潔潤滑油,以實現液體摩擦,減小摩擦阻力,減輕機件的磨損。并對零件表面進行清洗和冷卻。潤滑系統由機油泵、集濾器、限壓閥、油道、機油濾清器等組成。
起動系統
要使發動機由靜止狀態過渡到工作狀態,必須先用外力轉動發動機的曲軸,使活塞作往復運動,氣缸內的可燃混合氣燃燒膨脹作功,推動活塞向下運動使曲軸旋轉。發動機才能自行運轉,工作循環才能自動進行。因此,曲軸在外力作用下開始轉動到發動機開始自動地怠速運轉的全過程,稱為發動機的起動。完成起動過程所需的裝置,稱為發動機的起動系。它由起動機及其附屬裝置組成。
性能指標 編輯本段
發動機的性能指標用來表征發動機的性能特點,并作為評價各類發動機性能優劣的依據。發動機的性能指標主要有:動力性指標、經濟性指標、環境指標、可靠性指標和耐久性指標。
? 動力性指標:動力性指標是表征發動機做功能力大小的指標,一般用發動機的有效扭轉矩、有效功率、發動機轉速等作為評價指標。
? 經濟性指標:發動機經濟性指標一般用有效燃油消耗率表示。發動機每輸出1kW·h的有效功所消耗的燃油量(以g為單位)稱為有效燃油消耗率.
? 環境指標:汽車排放標準和汽車噪聲水平。中國機動車輛噪聲標準(GB/T 18697—2002)中規定,轎車的噪聲不得大于79dB(A)。
? 可靠性指標和耐久性指標:可靠性指標是表示發動機在規定的使用條件下,在規定的時間內,正常持續工作能力的指標。可靠性有多種評價方法,如首次故障行駛里程、平均故障間隔里程等。耐久性指標是指發動機主要零件磨損到不能繼續正常工作的極限時間。
? 發動機萬有特性:汽車發動機的工況能在很廣泛的范圍內變化。當發動機的工況(即功率和轉速)發生變化時,其性能(包括動力性、經濟性、排放性和噪聲等)也隨之改變。發動機性能指標隨運行工況而變化的關系稱為發動機萬有特性。
發動機技術 編輯本段
? 智能可變配氣正時系統(VVT-i)是豐田獨有的發動機技術,通過調整凸輪軸轉角以獲得最佳的配氣正時。
? 連續可變的氣門正時系統(CVVT)是韓國在VVT-i和i-VTEC的基礎上研發而來,通過控制氣門的開閉使燃料燃燒更充分。
? 可變氣門配氣相位和氣門升程電子控制系統(VTEC)由本田汽車開發的VTEC現已演變成i-VTEC。在中低速和高速會用兩組不同的氣門驅動凸輪,還可以控制氣門的開啟時間和提升程度,即改變進氣量和排氣量。
? 缸內直噴分層燃燒(FSI)將燃料在最恰當的時間直接注入燃燒室。通過對燃燒室內部形狀的設計,使火花塞周圍會有較濃的混合氣,而其他區域則是較稀的混合氣,保證了在順利點火的情況下盡可能地實現稀薄燃燒。
? 可變排量發動機(MDS)可在4缸和8缸模式間自動轉換。
注意事項 編輯本段
保養維修
汽車發動機需要定期做保養。在駕駛經過一些特別潮濕或者粉塵特別大的地區時,也要對發動機的相關部件做一些檢查保養。
1.定期更換
機油從機油濾芯的細孔通過時,把油中的固體顆粒和黏稠物積存在濾清器中。如濾清器堵塞,機油則不能順暢通過濾芯,會脹破濾芯或打開安全閥,從旁通閥通過,把臟物帶回潤滑部位,促使發動機磨損加快,內部的污染加劇。
2.保持曲軸箱通風良好
空氣中的污染物會沉積在PCV閥的周圍,可能使閥堵塞。如果PCV閥堵塞則污染氣體逆向流入空氣濾清器,污染濾芯使過濾能力降低,吸入的混合氣過臟,更加造成曲軸箱的污染,導致燃料消耗增大,發動機磨損加大,甚至損壞發動機。因此,須定期保養PCV,清除PCV閥周圍的污染物。
3.定期清洗曲軸箱
發動機在運轉過程中,燃燒室內的高壓未燃燒氣體、酸、水份、硫和氮的氧化物經過活塞環與缸壁之間的間隙進入曲軸箱中,與零件磨損產生的金屬粉末混在一起,形成油泥。量少時在油中懸浮,量大時從油中析出,堵塞濾清器和油孔,造成發動機潤滑困難,引起磨損。此外,機油在高溫時氧化會生成漆膜和積碳粘結在活塞上,使發動機油耗增大、功率下降,嚴重時使活塞環卡死而拉缸。因此,定期使用BGl05(潤滑系統高效快速清洗劑)清洗曲軸箱,保持發動機內部的清潔。
4.定期清洗
燃油在通過油路供往燃燒室燃燒的過程中,不可避免地會形成膠質和積碳,在油道、化油器、噴油嘴和燃燒室中沉積下來,干擾燃油流動,破壞正常空燃比,使燃油霧化不良,造成發動機喘抖、爆振、怠速不穩、加速不良等性能問題。使用BG208(燃油系統強力高效清洗劑)清洗燃油系統,并定期使用BG202控制積碳的生成,能夠始終使發動機保持最佳狀態。傳統的拆卸清洗方式會因為裝配誤差影響發動機的穩定性,使用,既能在不拆卸的情況下清除油箱、油道、噴油嘴、燃燒室及排氣氣體系統中的油泥、積炭,并且能修護機器運行中造成的摩擦磨損。
5.定期保養
發動機水箱生銹、結垢是最常見的問題。銹跡和水垢會限制冷卻液在冷卻系統中的流動,降低散熱作用,導致發動機過熱,甚至造成發動機損壞。冷卻液氧化還會形成酸性物質,腐蝕水箱的金屬部件,造成水箱破損、滲漏。定期使用BG540(水箱強力高效清洗劑)清洗水箱,除去其中的銹跡和水垢,不但能保證發動機正常工作,而且延長水箱和發動機的整體壽命。
6.燃油系統的保養清洗
由于汽車燃油分配系統非常精密,不能隨便拆解。在清洗發動機燃油系統時,要用發動機免拆清洗劑,因為用免拆清洗劑不需要拆解燃油系統,一方面可以起動到徹底清洗燃油系統的作用,另一方面有利于保護發動機的燃油系統。用免拆清洗劑清洗油路及油箱的操作流程:
7.打開油箱蓋,取出濾網筒,用軟管抽出油箱內的大部分燃油,留下約有10~15公分深的燃油,并加入80ml*牌乙醇汽油更換清洗劑,裝上濾網筒并蓋上油箱蓋。
8.拆開發動機進、回油管,將發動機進油管和回油管與免拆清洗機進油管和回油管相連接,并用專用接口連接進油管和回油管形成回路。
9.按免拆清洗機儲油罐的刻度或發動機缸數,將汽油加入清洗劑儲油罐中,并加入100ml*牌乙醇汽油更換清洗劑。
10.根據車型調整壓力,化油器車調整適當壓力即可,電噴車調整2-3個壓力。
11.起動發動機,檢查進、回油管是否漏油,怠速下清洗15-20分鐘,每3-5分鐘加大一次油門,使清洗的積碳和水分從排氣管排出。
12.拆開免拆清洗機與發動機進、回油管,恢復汽車油路,發動汽車檢查油管是否漏油。
13.打開油箱蓋,并取出濾網筒;用細軟的氣管接通氣泵,將軟管由油箱口插入油箱底部,以3kg/cm的氣壓吹掃,使油箱底部積存的各種雜質被翻騰的汽油清洗掉。在進行清洗時,最好用凈布擋在油箱口上,并不斷地移動軟管吹掃位置。
14.當確認油箱底部的雜質等被吹洗干凈后,立即放出油箱中的全部油品。特別提醒原油箱中放出的油,必須經過過濾沉淀后,才能再加入油箱。
15.更換燃油濾清器。
16.加入乙醇汽油或普通汽油,起動發動機,路試。
冬季熱車
水中熄火處理
當汽車在水中熄火后,千萬不能二次啟動,否則會對汽車發動機造成無法挽回的損失。在保證人員安全的情況下,應該立即將車輛推出深水區,確保發動機進氣口不會再吸入水分,在安全的地方停好。將分電器蓋拆下,用紙巾擦干蓋子,重新安裝即可。如果是進氣道進水,就必須更換空氣濾清器,并拆掉火花塞后將燃燒室里的水排出。
具體的做法應該是:打開發動機蓋,拔下分缸線,將火花塞拆下來,然后啟動發動機,發動機汽缸內的水就會通過火花塞的孔被排出發動機,將鑰匙保持在啟動位置5秒后松開,等10秒鐘后再啟動發動機5秒鐘,如此3次,基本上可以將水全部排出發動機了。但如果在拆下火花塞后啟動時發動機沒有轉動,則說明發動機已經頂死,只能進維修站處理。
汽車發動機過熱
發動機過熱會對發動機造成一定的損傷。如果汽車發動機出現溫度過高的現象,車主可以進行一些檢查:
1.風扇馬達不動或風扇離合器故障,無法正常降溫。
2.三元催化器阻塞或管子破裂,造成排氣受阻,導致引擎過熱。
3.冷卻系統的管子破裂,造成冷卻劑流失,散熱不能正常運作。
4.長期使用的水泵在高度磨損后,零件磨失脫落。
5.如果散熱器的蓋子壓力不一,會造成彈簧松動,蓋口無法緊密閉和。
6.節溫器無法正常開關,通常是機械故障或冷卻系統填充不完全而造成。也可能是更新的恒溫器和原有的溫度系數不同。
附件列表
詞條內容僅供參考,如果您需要解決具體問題
(尤其在法律、醫學等領域),建議您咨詢相關領域專業人士。